Week 8 Worksheet - Taylor Polynomials/Series (Computing and substitution) For your answers, you could use either \cdots or the \sum notation. In this solution, both of them are provided, but you don't need to have both on your hw or quiz. The Taylor polynomial of a function y = f(x) of degree n around the point x = a is $$T_n^a f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$ 1. Compute the degree two Taylor polynomial of the function $f(x) = e^{\tan x}$ around 0. Use this to estimate $e^{\tan(0.1)}$. **Solution:** $$n=2, a=0.$$ $f(0)=1$ $f'(x)=e^{\tan x}\sec^2 x\Rightarrow f'(0)=1$ $f''(x)=e^{\tan x}\sec^2 x\cdot\sec^2 x+e^{\tan x}\cdot 2\sec x\cdot\sec x\tan x\Rightarrow f^{''}(0)=1+0=1$ So $T_2^0f(x)=1+x+\frac{1}{2}x^2$. $e^{\tan(0.1)}\approx 1+0.1+\frac{1}{2}0.1^2=1.105$. 2. (2015 fall exam) Find $T_1^2 x^3$. **Solution:** $$n = 1$$, $a = 2$. $f(2) = 8$. $f'(x) = 3x^2 \Rightarrow f'(2) = 12$ So $T_1^2 x^3 = 8 + 12(x - 2)$. 3. $(2015 \text{ fall } exam) \text{ Find } T_2 \cos(\sin x)$. **Solution:** $$n = 2$$, $a = 0$. $f(0) = \cos(0) = 1$. $f'(x) = -\sin(\sin x) \cdot \cos x \Rightarrow f'(0) = 0$ $f''(x) = -\cos(\sin x) \cdot \cos x \cdot \cos x - \sin(\sin x) \cdot (-\sin x) \Rightarrow f'(0) = -1$ So $T_2 \cos(\sin x) = 1 - \frac{1}{2}x^2$. The following problems are using substitution and the 5 formulas on the textbook page 78. 4. Find the Taylor series $T_{\infty}f(x)$ for the function $f(x) = \sin(2x)$. **Solution:** Since $$\sin u = u - \frac{u^3}{3!} + \frac{u^5}{5!} - \frac{u^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{(2n+1)!}$$, then take $u = 2x$, we have $\sin(2x) = 2x - \frac{2^3x^3}{3!} + \frac{2^5x^5}{5!} - \frac{2^7x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{2^{2n+1}x^{2n+1}}{(2n+1)!}$. 5. Find the Taylor series $T_{\infty}f(x)$ for the function $f(x) = \frac{1}{1+\pi t}$. (What about $\frac{t}{1+\pi t}$?) Solution: Since $$\frac{1}{1-u} = 1 + u + u^2 + u^3 + \dots = \sum_{n=0}^{\infty} u^n$$, then take $u = -\pi t$, we have $\frac{1}{1+\pi t} = 1 - \pi t + \pi^2 t^2 - \pi^3 t^3 + \dots = \sum_{n=0}^{\infty} (-\pi t)^n = \sum_{n=0}^{\infty} (-\pi)^n t^n$. $$\frac{t}{1+\pi t} = t \left(1 - \pi t + \pi^2 t^2 - \pi^3 t^3 + \dots\right) = \sum_{n=0}^{\infty} t \left(-\pi t\right)^n = \sum_{n=0}^{\infty} (-\pi)^n t^{n+1}.$$ 6. Find the Taylor series $T_{\infty}f\left(x\right)$ for the function (a) $$f(x) = \ln(2 + 2t)$$. (b) $$f(x) = \ln \sqrt{\frac{1-t}{1+t}}$$. ## Solution: (a) $$f(x) = \ln[2(1+t)] = \ln 2 + \ln(1+t)$$. Since $$\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{t^n}{n}$$, then $$f(x) = \ln 2 + t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \dots = \ln 2 + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{t^n}{n}.$$ **(b)** $$f(x) = \frac{1}{2} \ln \frac{1-t}{1+t} = \frac{1}{2} \ln (1-t) - \frac{1}{2} \ln (1+t)$$ $$f(x) = \frac{1}{2} \left[-t - \frac{(-t)^2}{2} + \frac{(-t)^3}{3} - \frac{(-t)^4}{4} + \cdots \right] - \frac{1}{2} \left[t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots \right]$$ $$= \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-1)^n t^n}{n} + \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{t^n}{n}$$ $$= \frac{1}{2} \sum_{n=1}^{\infty} -\frac{t^n}{n} + \frac{1}{2} \sum_{n=1}^{\infty} (-1)^{n+1} \frac{t^n}{n}$$ $$= \frac{1}{2} \sum_{n=1}^{\infty} \left[(-1)^{n+1} - 1 \right] \frac{t^n}{n}.$$